

Advanced Analog Technology, Inc.

AAT1301B

Product information presented is current as of publication date. Details are subject to change without notice

PROGRAMMABLE VCOM BUFFER

FEATURES

- I²C Interface
- Output Range Adjustable by Resistors
- 7 Bits Adjustable Sink Current Output
- 2.6V to 5.5V Logic Voltage
- 7.4V to 18V Analog Voltage
- EEPROM for VCOM Value Memory
- High SR, 200mA Output Short-Current OP

APPLICATIONS

• TFT LCD Panel

PIN CONFIGURATION

ORDERING INFORMATION

GENERAL DESCRIPTION

The AAT1301B is a programmable VCOM buffer for TFT LCD panel application. VCOM voltage can be adjusted and recorded by I²C interface in this device. In addition, users may also set VCOM voltage with 7-Bit accuracy (128 steps). To make AAT1301B an even easier component to use, all programmed settings can be stored in the EEPROM and recalled during power-up.

TYPICAL APPLICATION

DEVICE	PART	PACKAGE	PACKING	TEMP RANGE	MARKING	MARKING
TYPE	NUMBER					DESCRIPTION
AAT1301B	AAT1301B- T2-T	T2: TSSOP8	T: Tape and Reel	–40 °C to +85 °C	AAT1301B XXXXXX	Device Type Lot no. (6~9 Digits)
AAT1301B	AAT1301B- Q9-T	Q9: VSON8L- 3x3	T: Tape and Reel	–40 °C to +85 °C	AAT1301B XXXXXX	Device Type Lot no. (6~9 Digits)

Note: All AAT products are lead free and halogen free.

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

```
Version 1.03
```

Page 1 of 10

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Analog Voltage (VDDA)	V _{DDA}	19	V
Supply Logic Voltage (VDD)	V _{DD}	6	V
Input Voltages to GND (SET, SCL, SDA)	VI	–0.5V to V _{DD} +0.5V	V
Output Voltages to GND (OUT, VCOM)	Vo	–0.5V to V_{DDA} +0.5V	V
Maximum Junction Temperature	TJ	+125	°C
Operating Temperature	T _C	-40 to +85	°C
Storage Temperature	T _{STORAGE}	-45 to +125	°C
Lead Temperature (Soldering for 10 Seconds)		260	°C

Note: Stresses exceeding values indicated in ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended period of time may also compromise device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	МАХ	UNIT
Operating Free-Air Temperature	Tc	-40	+85	°C

- 台灣類比科技股份有限公司 -

ELECTRICAL CHARACTERISTICS

(V_{DD} = 2.6V to 5.5V, T_C = -40 °C to +85 °C, unless otherwise specified. Typical values are tested at +25 °C ambient temperature, while V_{DD} = 3.3V, and V_{DDA} = 10V.)

Operating Power

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Input Supply Analog Voltage	V _{DDA}		7.4	-	18	V
Input Supply Logic Voltage	V _{DD}		2.6	-	5.5	V
VDD Linder Voltage Leekout	V _{UVLO}	Rising	2.1	2.2	2.3	V
		Hysteresis	-	0.1	-	V
Logic Supply Current	I _{VDD}		-	-	700	μA
Analog Supply Current	I _{VDDA}		-	-	3	mA
Input Supply Voltage Rising Time (0V to 3.3V)	T _R		0.5			ms

V_{COM} Buffer

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Output Swing Low	V _{OL}	I _L = –10mA, V _{OUT} = 1V	-	1.02	1.05	V
Output Swing High	V _{OH}	I _L = 10mA, V _{OUT} = 9V	8.95	8.98	-	V
Output Swipa	V _{SH}	I _L = –50mA, V _{OUT} = 5V	-	5.03	5.05	V
	V _{SL}	I _L = 50mA, V _{OUT} = 5V	4.95	4.97	-	V
Slew Rate	SR	V ₁ = 2V to +8V, 20% to 80%	-	15	-	V/µs
Peak Drive Current	I _{SC}	V _I = 5V, C _{OUT} = 0.47µF	-	±150	-	mA

Nonvolatile Memory Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
EEPROM Write Cycle			10,000	-	-	Write

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.03

Page 3 of 10

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.6V \text{ to } 5.5V, T_C = -40 \circ C \text{ to } +85 \circ C$, unless otherwise specified. Typical values are tested at +25 °C ambient temperature, $V_{DD} = 3.3V$. $V_{DDA} = 10V$.)

DC Electrical Characteristic

PARAMETER	SYMBOL	TEST CONDITION	MIN	ΤΥΡ	MAX	UNIT
OUT Voltage Range	V _{OUT}		V _{SET} +0.5	-	18.0	V
Sat External Desistance	D	V _{DDA} = 8V	3.35	-	67.00	kΩ
Set External Resistance	R _{SET}	V _{DDA} = 18V	6.75	-	135.00	kΩ
Set Current	I _{SET}		-	-	134	μA
SDA SCL Pull Up Resistor	R _{PU}		4.7	10.0	-	kΩ

AC Electrical Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
SCL Clock Frequency	f _{SCL}		1	-	400	kHz
SDA SCL Capacitive Loading	СВ		-	-	400	pF
EEPROM Write Time	tw		-	10	25	ms

PIN DESCRIPTION

PIN NO.	NAME	I/O	DESCRIPTION
1	OUT	0	Adjustable Sink-Current Output to VCOM Voltage Buffer
2	VDDA	Р	Analog Power Supply
3	VCOM	0	VCOM Voltage
4	GND	Р	Ground
5	VDD	Р	Logic Power Supply
6	SDA	I/O	I ² C Data Port
7	SCL	I	I ² C CLK Port
8	SET	0	Maximum Sink Current Adjustment Point

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. – Version 1.03 Page 4 of 10

TYPICAL OPERATING CHARACTERISTICS

(AVDD = 10V, R1 = 200k Ω , R2 = 243k Ω , and R_{SET} = 24.9k Ω , T_C = +25 °C Unless Otherwise Specified.)

Load Regulation

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. – Version 1.03

Page 5 of 10

October 2013

AAT1301B

FUNCTION BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. – Version 1.03

Page 6 of 10

DETAILED DESCRIPTION

Advanced Analog Technology, Inc.

AAT1301B

/DDA

2 The AAT1301B adjusts output voltage by sinking VDD 5 current. Users may easily calculate output voltage by using the following equation: VCOM 3 $V_{OUT} = VDDA * \frac{R2}{R1 + R2} \left(1 - \frac{\left(SETTING + 1\right) * R1}{20 * 128 * R_{SET}} \right)$ R1 "SETTING" represents the 7-Bit D/A converter setting SCI 1<u>00</u>T AAT1301B value in above equation. It can be read or written by SDA the I²C interface. The I²C interface protocol is shown in 8 SET Figure 2. Where: R2 Bit 1~7: Slave Address 1001111 Bit 8: = 1 Reading Command RSET = 0 Writing Command Bit 9, 18: Slave Acknowledgement GND 4 Bit 10 ~ 16: SETTING Value Bit 17: In Slave Writing Command (Bit 8 = 0), Figure 1. The Application Circuit "Bit17 = 1" Write Data into REG "Bit17 = 0" Write Data into EEPROM. In Reading Operation (Bit 8 = 1), Bit 17 can be 1 or 0. 12 13 15 16 18 SCL SDA Start Slave Address 1001111 VCOM SETTING Value R/W AĊK Reg/Rom ACK

Figure 2. The I²C Interface Protocol

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.03
Page 7 of 10

Advanced Analog Technology, Inc.

AAT1301B

DESIGN PROCEDURE

One of many important functions of AAT1301B is to minimize flicker in TFT-LCD panels by adjusting VCOM voltage. AAT1301B is attached to an external resistive voltage-driver to sink a programmable current (IOUT), which determines the VCOM voltage. Eq. 1 and Eq.2 can be used to calculate the output current (IOUT) and output voltage (VCOM).

IOUT =	(SETTING+1) *	VDDA	Eq. 1	
	128	20(R _{SET})		

Table 1 shows calculated value of VCOM under following condition:

AVDD = 10V, R1 = 200k Ω , R2 = 243k Ω , and R_{SET} = 24.9k Ω .

Table 1. VCOM Setting V	Value
-------------------------	-------

SETTING VALUE	VCOM(V)
0	5.4681
10	5.2960
20	5.1239
30	4.9518
40	4.7797
50	4.6076
60	4.4355
70	4.2634
80	4.0913
90	3.9192
100	3.7471
110	3.5750
127	3.2824

LAYOUT CONSIDERATION

Power Supply Bypassing and PCB Layout

AAT1301B performs stable gain at high frequency. Users of this device are highly recommended to use ground plane construction. To reduce oscillation, lead lengths should be as short as possible and the power supply pins must be well bypassed.

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.03
Page 8 of 10

PACKAGE DIMENSION

TSSOP8

Symbol	Dimensions In Millimeters			
	MIN	TYP	MAX	
A	1.05	1.10	1.20	
A1	0.05	0.10	0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
D	2.90	3.05	3.10	
E	6.2	6.4	6.6	
E1	4.3	4.4	4.5	
е		0.65		
L	0.40	0.60	0.75	

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.03

Page 9 of 10

PACKAGE DIMENSION

VSON8-3x3

as the below configuration

Symbol	Dimensions In Millimeters		
	MIN	ТҮР	MAX
А	0.80	0.90	1.00
A1	0.00	0.02	0.05
b	0.25	0.30	0.35
С		0.20	
D	2.90	3.00	3.10
D2	1.45	1.50	1.55
E	2.90	3.00	3.10
E2	2.25	2.30	2.35
е		0.65	
	04	0 475	0 525

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.03

Page 10 of 10