AT6861EM

SPEC

V1.9

Date: 2016/12/06

This document contains information on a new product specifications and information herein are subject to change without notice.

富閎科技股份有限公司 Andatek Technology Inc.,

2F., No.6-3. Duxing Rd., Science Park., Hsinchu 30078, Taiwan(R.O.C)

Tel: 13823554918

AT6861EM DIGITAL SOUND EFFECTS ENGINE

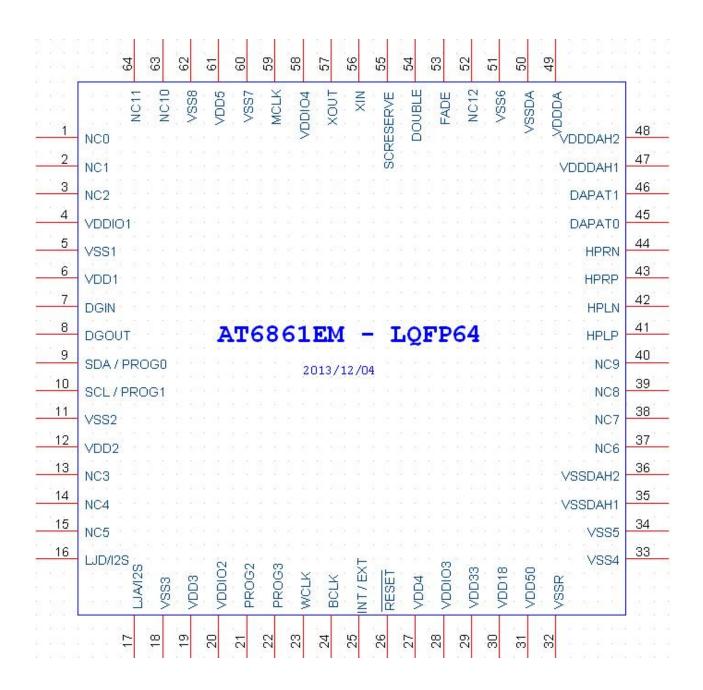
Revision History

Rev.	Date	Author	Description			
V1.0	2012/01/11	Dream	Reference: V0.931			
V1.1	2013/03/11	Dream	Reference: V0.932			
V1.2	2013/03/25	Dream	Reference: V0.933			
V1.3	2013/04/16	Dream	Reference: V0.934			
V1.4	2013/06/25	Dream	Reference: V0.935			
V1.5	2013/12/04	Dream	Reference: V0.936			
V1.6	2013/12/06	Dream	Reference: V0.937; Add Pin.55 (SCReserve) Description			
V1.7	2014/03/19	Dream	Reference: V0.938; Modify Page 8 ,10 & 11			
V1.8	2014/03/20	Dream	Reference: V0.938; Modify Page 10 & 11			
V1.9	2016/12/06	Kevin	DAC information modify			

1. GENERAL DESCRIPTION:

The AT6861EM Digital Reverb Engine provides high performance digital audio signal processing capability required to implement a compact, easy to use, high quality reverb solution. Built-in SRAM eliminates the need for wide bus connections to external RAM and allows custom development. The 16 embedded programs enable instant usability and general application.

FEATURES:


- 16 selectable functions include halls, rooms, plates, delays, chorus, flange, vocal cancel, and rotary speaker emulation.
- Serially programmable SRAM for program development or dynamically changing programs
- 128 instructions per word clock. (6 MIPS @ 48 kHz Sampling Frequency).
- 32K Word location STATIC RAM provides over 0.68s of delay at 48 kHz sampling frequency.
- Built-in 2 24-bits STEREO 3rd Order DSM-DAC [Internal DAC(Pin.41 ~ 44)]
- 4 LFO Engine
- PS/Left-Justified Interface Selectable
- Distortion Effect Unit
- Fade-in/Fade-out Unit to anti-noise
- Using External12MHz Crystal (The best is 12.288MHz)

Applications:

- Guitar and Instrument Amps
- Digital Mixing Boards
- Karaoke Systems
- Digital Effects Boxes
- Computer Sound Cards
- Car Audio Systems
- Personal Stereo Products

2. Pin Configuration:

AT6861EM LQFP64 Diagram

3. Pin assignment and Function description

LQFP 64	Signal Name	Туре	Description			
1	NC0	NC	No Connection, Include Pull-Down Resister, Reserve is 0.			
2	NC1	NC	No Connection, Include Pull-Down Resister, Reserve is 0.			
3	NC2	NC	lo Connection, Include Pull-Down Resister, Reserve is 0.			
4	$V_{\rm DDIO1}$	P/I	Digital IO 3.3V Power Input Pin			
5	V_{SS1}	G	Digital IO Ground Pin			
6	V_{DD1}	P/I	Digital Core 1.8V Power Input Pin			
7	DGIN	I	PCM Data Input; Include Pull-Down Resister.			
8	DGOUT	0	PCM Data Output			
9	SDA/PROG0	I	Serial Interface Data Line Input & Internal Program Select 0			
			Include Pull-Down Resister, Reserve is 0.			
10	SCL/PROG1	I	Serial Interface Clock Line Input & Internal Program Select 1			
			Include Pull-Down Resister, Reserve is 0.			
11	V_{SS2}	G	Digital Core Ground Pin			
12	V_{DD2}	P/I	Digital Core 1.8V Power Input Pin			
13	NC3	NC	No Connection, Include Pull-Down Resister, Reserve is 0.			
14	NC4	NC	No Connection, Include Pull-Down Resister, Reserve is 0.			
15	NC5	NC	No Connection, Include Pull-Down Resister, Reserve is 0.			
16	LJD / /28	I/O	Left-Justified / PS DAC PCM Select Input			
			Include Pull-Down Resister.			
			(1:LJ; 0: 💤 🕏) , Reserve is 0			
17	LJA / I ² S	I/O	Left-Justified / 125 ADC PCM Select Input			
			Include Pull-Down Resister.			
			(1:LJ; 0: 🕰S) , Reserve is 0			
18	V_{SS3}	G	Digital Core Ground Pin			
19	V_{DD3}	P/I	Digital Core 1.8V Power Input Pin			
20	$V_{\rm DDIO2}$	P/I	Digital IO 3.3V Power Input Pin			
21	PROG2	ı	Internal Program Select 2			
			Include Pull-Down Resister, Reserve is 0.			
22	PROG3	I	Internal Program Select 3			
			Include Pull-Down Resister, Reserve is 0.			
23	WCLK	0	PCM Word Clock Output			
24	BCLK	0	PCM Bit Clock Output			

AT6861EM DIGITAL SOUND EFFECTS ENGINE

25	INT / EXT	I	Internal/External Program Select Input; Include Pull-Up resister,			
			Reserve is 1. (1:INT ROM;0:EXT ROM)			
26	RESET	I	System Reset pin, Active Low			
			Include Pull-Up Resister.			
27	V_{DD4}	P/I	Digital Core 1.8V Power Input Pin			
28	V _{DDIO3}	P/I	Digital IO 3.3V Power Input Pin			
29	V_{DD33}	P/O	LDO Regulator 3.3V Power Output Pin			
30	V _{DD18}	P/O	LDO Regulator 1.8V Power Output Pin			
31	V_{DD50}	P/I	LDO Regulator 5.0V Power Input Pin			
32	V_{SSR}	P/I	LDO Regulator Ground Pin			
33	V_{SS4}	G	Digital Core Ground Pin			
34	V_{SS5}	G	Digital IO Ground Pin			
35	V _{SSDAH1}	G	DAC Digital Ground Pin for post-driver			
36	V _{SSDAH2}	G	DAC Digital Ground Pin for post-driver			
37	NC6	NC	No Connection, Reserved To Test			
38	NC7	NC	No Connection, Reserved To Test			
39	NC8	NC	No Connection, Reserved To Test			
40	NC9	NC	No Connection, Reserved To Test			
41	HPLP	0	Internal DAC Delta-Sigma Left High Digital Data Output,			
			24mA Driver			
42	HPLN	0	Internal DAC Delta-Sigma Left Low Digital Data Output,			
			24mA Driver			
43	HPRP	0	Internal DAC Delta-Sigma Right High Digital Data Output,			
			24mA Driver			
44	HPRN	0	Internal DAC Delta-Sigma Right Low Digital Data Output,			
			24mA Driver			
45	DAPAT0	I	DAC Delta-Sigma Data Pattern Select Input			
			Include Pull-Down Resister, always setting to "1".			
46	DAPAT1	I	DAC Delta-Sigma Data Pattern Select Input			
			Include Pull-Down Resister always setting to "1".			
47	V _{DDDAH1}	P/I	DAC 3.3V Power Input Pin			
48	V_{DDDAH2}	P/I	DAC 3.3V Power Input Pin			
49	V_{DDDA}	P/I	DAC 1.8V Power Input Pin			
50	V _{SSDA}	G	DAC Digital Ground Pin for pre-driver			
51	V_{SS6}	G	Digital Core Ground Pin			
52	NC12	NC	No Connection, Include Pull-Up Resister, Reserve is "1".			
53	FADE	I/O	FADE IN/OUT Select Input; Include Pull-Down Resister,			
			Reserve is 0. (0:Effect-ON ; 1:Effect-OFF = By Pass)			

Andatek Technology Ltd

AT6861EM DIGITAL SOUND EFFECTS ENGINE

54	DOUBLE	I/O	Double Reverb Enable Input; Include Pull-Down Resister,				
			Reserve is 0. (1:Double Enable ; 0:Double Disable = Normal)				
55	SCRESERVE	I/O	Special Engineering Test Pin; Include Pull-Down Resister.				
			Reserve is "0". (1: Enable; 0:Disable)				
56	XIN	I	Crystal Oscillator Input				
57	XOUT	0	Crystal Oscillator Output				
58	$V_{\rm DDIO4}$	P/I	Digital IO 3.3V Power Input Pin				
59	MCLK	0	PCM System Clock Output				
60	V _{SS7}	G	Digital IO Ground Pin				
61	V_{DD5}	P/I	Digital Core 1.8V Power Input Pin				
62	V_{SS8}	G	Digital Core Ground Pin				
63	NC10	NC	No Connection, Include Pull-Down Resister, Reserve is "0".				
64	NC11	NC	No Connection, Include Pull-Down Resister, Reserve is "0".				

NOTE:

I: Input only

O: Output only

I/O: Input or Output

G: Ground

P: Power supply
Al : Analog Input

NC: No Connection

4.Architecture Detail:

4-1 DigIn/DigOut Interface:

Only master clock mode could be supported. The system clock (MCLK), word clock (WCLK), bit clock (BCLK) are outputs synchronously generated on-chip for audio ADC and DAC. The output SysClk/WordClk ratio and SysClk/BitClk ratio are both fixed value - 256 times and 64 times. The device accepts & output the left justified & PS digital audio format & the set by the pin .16 & pin.17.

For an illustration of the require relationship between MCLK, BCLK and WCLK, see the figure as blew.

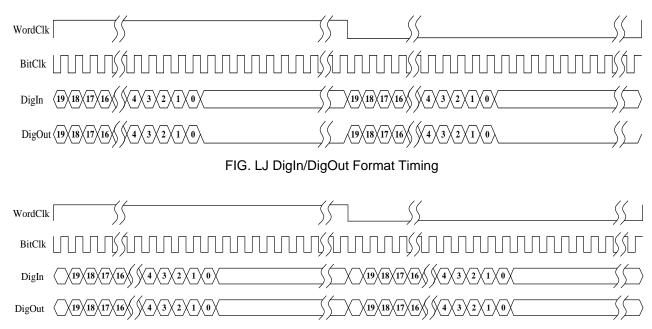


FIG. PS DigIn/DigOut Format Timing

4-2 Fade Unit (Effect-ON / -OFF)

AT6861EM apply a fade unit to anti the noise when switch AT6861EM internal program or download external effect program. The fade will cost about 300ms. The Effect-ON when the FADE (Pin.53) is "0" and Effect-OFF when the FADE (Pin.53) is "1".

4-3. Reset Circuitry:

The AT6861EM may be asynchronously reset using the /Reset pin, with a minimum pulse width of 163ns. This will start a Data RAM self test and initial to zero. After reset, the Data RAM will start self test and initial to zero, all internal counters and state registers set to zero.

4-4. Serial Microprocessor Interface:

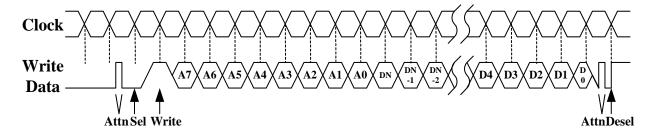
The basic format for the micro serial interface is:

Attn Sel R/W A7 A6 A5 A4 A3 A2 A1 A0 DN DN-1 DN-2 ... D2 D1 D0 Attn Desel

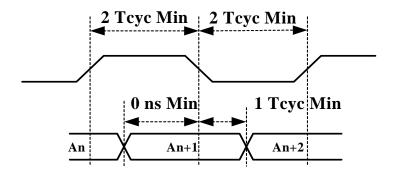
Attn: A 0-1-0 is used to signal attention/ start.

Sel / Desel: 0: Select; 1: Deselect.

A7 - A0: Address.


R /W: 0: Read; 1: Write.

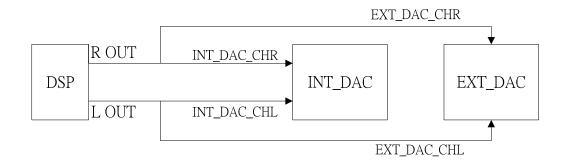
DN - D0 : Data


Attn Desel: Write mode only.

Note:

- 1. There is a short period of High- Z during a read between A0 and the first data bit shifted out. This period must be at least 5 system clocks long, 1 word clock long if not in direct mode (CS0 [3]).
- 2. As long as data is being sent during a write, the address will be automatically incremented. Therefore only a start address need be sent.
- 3. The phase of the clock is unimportant.

Write Timing (Tcyc = 1/FmasterClk)


4-5 Internal Program List:

The 16 proven high-quality ROM programs are ready to go. By setting the chip to internal mode, the four program pins PROG [3:0] could be used to select the different algorithms. PROG[0] is SDA and PROG[1] is SCL pin.

PROG [3:0]	Name	Description		
0000	Hall 1	Bright hall reverb for drums, guitars, and vocals.		
0001	Hall 2	Warm hall for acoustic guitars, pianos, and vocals.		
0011	Room 1	Hardwood studio for acoustic instruments.		
0010	Room 2	Ambience for acoustic mixes and synth sounds.		
0110	Room 3	Warm room for guitars and rhythm instruments.		
0111	Plate 1	Classic plate reverb for lead vocals and instruments.		
0101	Plate 2	Sizzling bright plate reverb for vocals and drums.		
0100	Plate 3	Short vintage plate reverb for snares and guitars.		
1100	Chorus	Stereo chorus for guitars and pianos.		
1101	Flange	Stereo flanger for jet wash effects.		
1111	Delay 1	125ms slapback delay for vocals and guitars.		
1110	Delay 2	0.68sec slapback delay for vocals and guitars.		
1010	Room/Chorus 1	Simulated a small space reverb add stereo chorus effect.		
1011	Room/Chorus 2	The small space reverb is same with Room/Chorus1, but added more stereo chorus effect.		
1001	Vocal Cancel	Removes lead vocals from many stereo recordings.		
1000	Rotary Speaker	Rotary speaker emulation for organs and guitars.		

4-6 Internal DAC & External DAC:

AT6861EM output digital data to Internal DAC & External DAC at the same time (L OUT = INT_DAC_CHL = EXT_DAC_CHL; R OUT = INT_DAC_CHR = EXT_DAC_CHR), so AT6861EM was only supported to output 2-channel digital data, see the figure as blew.

5. AC and DC Specification

5-1ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Min.	Max.	Units		
VDDIO1, VDDIO2, VDDIO3, VDDIO4	3.0	3.6	V		
VDDDAH1,VDDDAH2	3.0	3.6	V		
VDD1,VDD2,VDD3,VDD4,VDD5,VDD6,VDD7	1.62	1.98	V		
VDDDA	1.62	1.98	V		
Storage temperature	-25	125	°C		
Ambient temperature with power applied	0	70	°C		

^{*}Note: Stresses above those listed may cause permanent damage to the devices

5-2D.C Characteristics (VDDIO=3.3V±10%, VDD=1.8V±10%Ta=0-70°C)

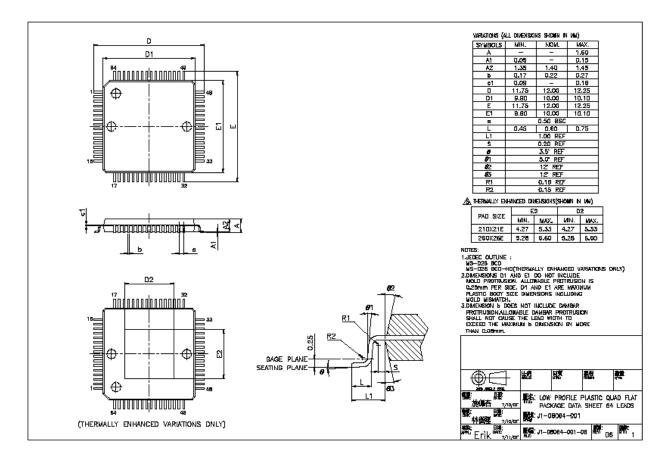

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V_{IH}	Input High Voltage		1.8	3.3		V
V_{IL}	Input Low Voltage			0	0.95	V
V_{OH}	Output High Voltage	I _{OH} = -8mA	3.15	V _{DDIO1}		V
V _{OL}	Output Low Voltage	I _{OL} = 8mA		0	0.15	V
I _{IL}	Input Leakage Current	$0V < V_{IN} < V_{DD}$		54.5		μА
Z _{PH}	Pull High Resistor Impedance			55		Kohm
Z_{PL}	Pull Low Resistor Impedance			55.5		Kohm
I _{DD,OPT}	Operating Current	F _{OSC} = 12.288MHz		15.8		mA
I _{LIMIT18}	Pin.30 Load Current				85	mA
I _{LIMIT33}	Pin.29 Load Current				85	mA

Table. DC Electrical Characteristics

6. Package Information

LQFP64

